Some Housekeeping, and My Trip on SOFIA
Hi, all. Steven Silverberg from the science team here. Rather than my blog posts appearing under Marc’s name, I’ll be writing on this name from now on. It should make the blog a bit easier and less confusing to read.
Two weeks ago, I was lucky enough to observe on the Stratospheric Observatory For Infrared Astronomy (SOFIA). Here’s a summary of what we did, and what it was like.
SOFIA is a 747 with a custom hatch in the back and a telescope mounted inside, allowing us to observe from 40,000 feet. That altitude is above the primary part of the atmosphere that blocks infrared light, which means the telescope can observe at wavelengths longer than the ones we see in our Disk Detective WISE data, but shorter than the submillimeter wavelengths we’ve observed at with the James Clerk Maxwell Telescope. This neatly fills in a gap in our SEDs, giving us a clearer picture of how dust is distributed in these systems.
Last SOFIA proposal cycle, we submitted two proposals, and one was accepted for “do if time” status. This proposal was to get 53 micron data on a set of our main sequence A stars, as well as those identified by other projects (such as Patel et al. 2014). Our first set of observations was scheduled for May 9-11, so John Debes from the science team (and Space Telescope Science Institute) and I flew to California to ride along.
The plane itself is pretty impressive. 747s are big.
SOFIA is a working plane, so everyone onboard is piped in to the comms system. Wearing a flight comms headset makes you look important.
Because they had space, I was given permission to ride along in the cockpit for takeoff. Unfortunately, our first flight had to be scrubbed before takeoff, due to issues with some of the engine gauges.
I did, however, get to ride in the cockpit for takeoff on the second night. Sunset is really pretty when looking through the windshield of a 747.
The main cabin of SOFIA feels a little bit like mission control; lots of people looking at lots of monitors, all in rows. On these flights, we had SOFIA flight safety crew, the mission directors, telescope operators, and the team that built the HAWC+ instrument we were using.
We proposed to look at objects with an instrument called HAWC+ (High-resolution Airborne Wideband Camera-plus). This is a far-infrared camera, designed to probe long wavelengths. If the detector is sensitive enough and our target bright enough, we would be able to see light from our star+disk systems to add another point to our SED for that DDOI, but at worst we can get upper limits on what flux there is, letting us at least constrain the system.
HAWC+ has to come into the cabin through the main doors of the airplane. It’s engineered to fit through with 1/8 of an inch of clearance on either side.
SOFIA helpfully has lots of posters along the bulkhead about how it works…
…and some of the science it does
It also has one about how NASA came to acquire the plane.
Sunsets were impressive through the regular windows, too.
So was the Moon on our second flight.
Our last flight lasted long enough that the Sun was rising as we went into our descent.
The hangar the program is based out of is (unsurprisingly) huge.
All in all, it was a very educational, very informative, very fun trip on SOFIA. Thanks to you all for contributing to this project to make things like getting data from it feasible.
We won an award!
Good news, everyone: the Disk Detective team won an award from NASA!
Disk Detective received a 2016 Robert H. Goddard Honor Award for Exceptional Achievement in Outreach by a team.
We won this award for “providing an outstanding example of how NASA can serve the public by including them in the process of astronomical discovery.” If that’s not a perfect description of Disk Detective, I don’t know what is.
Marc accepted the award on behalf of the team. However, he wasn’t the only one there; also in attendance were Steven Silverberg (i.e., me, from the science team), and Katie Lowe, a member of the advanced user group who lives in Baltimore and came down to Goddard Space Flight Center for the day.
It’s thanks to the contributions of everyone–especially our citizen scientists–that we were able to win this award. Thanks to all of you for your contributions to the project, and keep up the good work! (The project is about 55% complete.)
Steven Silverberg