Archive | Uncategorized RSS for this section

Our Third Paper: The Advanced Users’ Story

By Katharina Doll, Johanna J.S. Finnemann, Hugo A. Durantini Luca, Joshua Hamilton, and Michiharu Hyogo

As Steven from the science team wrote in his blog post, our third paper has been accepted for publication. Nine citizen scientists from the advanced user team are listed as co-authors.  Today we want to show you the work we did for this paper.

Our contributions for this paper fall into three parts: the image analysis of Robo-AO follow-up images, the classification of M dwarf debris disk candidates presented by Theissen and West (2014), and finding references related to our disk candidates.

1. Analysis of Robo-AO images

As already explained in the glossary and earlier in this blog, only objects with significant Infrared excess in WISE images are pre-selected to be classified.  It is mainly because the circumstellar disks shine brightly in these spectrums. However, there is a major problem: several close-together objects can blend together in infrared, making it look like the sort of infrared excess the disks we are searching for exhibit.. Moreover, there are other astronomical objects which also shine brightly in Infrared spectrum of light such as background stars (located nearby) or much further away, galaxies, interstellar gas and dusts, and AGNs/QSOs outside our own galaxy. The Robo-AO and Dupont telescopes have a better resolution than the flipbooks shown on the classification interface, so we’re able to see contaminating objects that don’t show up when you classify on the main site (and therefore submit something as a “good candidate”).

We learned how to work with software (DS9, which professional astronomers also use) to look at the files from the telescopes and determine any contaminants.  We’ll show you several sample images that we used:

Case 1   Close by Background Objects

Figure1

Example image of a disk candidate with a close-by background object.

Here is an example image of an object (Zoo ID AWI0000kk6) with a bright object located very close by. It needed follow-up observing because it is already known as a binary system (and had been flagged in the Talk comments).

Case2:    Faint Fuzzy object

Figure2

Example of a disk candidate with a faint, fuzzy background object.

Another example image (Zoo ID AWI000028h) with a faint fuzzy object located in the corner of the image. This object (located at 11 o’clock from the main target) is likely an extragalactic object like a galaxy or an AGN.

Case 3: Good object in Follow-up Images

Figure3

Example of a good object with no apparent contamination or confusion.

2. Classification of disk candidates published by Theissen & West (2014)

As Steven explained in his blog post on the paper, members of the advanced user team looked at previously published disk candidates by Theissen & West (2014). Using their WISE IDs, we used the IRSA Finder Chart tool to generate images in the same wavelengths as in the flipbooks on the main site (SDSS, DSS, 2MASS, WISE). Joshua Hamilton added red circles on all images so that we could use the same method on these objects as we do on normal Disk Detective objects.

Figure15

Theissen & West’s disk candidates found in the IRSA Finder Chart. Red circles displayed were added by a super user, Joshua Hamilton.

We found out that most of the disk candidates from Theissen & West (2014) disk candidates are not present in Disk Detective because they have a low signal-to-noise ratio in WISE 4 (the last image you see in a flipbook), and in addition most are contaminated in our criteria. For example, all were extended in W4 images and thirteen of them consists of multiples.

As you can see in the example above, more than one object is visible in SDSS images, and the bright blue fuzzy objects extend outside the red circle in WISE images . Hence we concluded this object does not satisfy our criteria of our classification process.  

3. Finding references

Lastly, we contributed by finding references related to our disk candidates. About a week before the paper was first submitted, Marc Kuchner, the principal investigator, had asked the super users to look for any interesting references related to the disk candidates of this paper just in case.  We used tools such as SIMBAD and VizieR (which Marc explained here and here on the blog) and searched information regarding each of those candidates.  VizieR provides us with access to a number of astronomical catalogs. Each of these catalogs consists of a major survey mission and it includes astronomical information regarding the object such as distance(parallax), luminosity, and spectral type.   

Let’s show you an example of how it was done.  First we typed in coordinates for each candidate, in this case AWI00062lo, which is shown in one of the figures above.

In the figure, we see the coordinates of the candidate, AWI00062lo.  After we enter this, we are able to see a number of astronomical catalogs related to this object.  

In this figure below, you can see a part of the VizieR site that shows two catalogs inside blue circles.

Figure12

Example of how catalogs are displayed within VizieR.

Two catalogs shown are Gaia DR2 and FON Astrographic Catalog.  One of these catalogs, Gaia DR2, is especially important because this survey mission measured positions and distances of 1 billion stars with unprecedented precision. The parallax value which determines the distance of a star is provided by Gaia (8.8526 milli-arcseconds =  112.9 parsecs in this case).

Through this simple process, we found a significant catalog in VizieR, Oh et al. (2017), which contains data on some of our candidates including AWI00062lo.  In the Oh et al. (2016) survey, new comoving pairs are searched in the Tycho-Gaia solution. 

This has assisted us to compare our results with Oh et al. (2017): For example, only 1.37% of stars in Oh et al. (2017) are members of comoving pairs while 11% of our candidates are in such pairs.  These results support the hypothesis of Zuckerman (2015) which stated that there is a high frequency of warm debris disks exist within binary systems of young stars.   We also cross-checked with other reference catalogs on VizieR.

4. Who are we?

Finally, a brief look at who we are and what we do in our daily lives.

Joshua – I am from the mid-Michigan area where I work as the Director of Youth Ministry at a large Catholic parish. I have a degree in Media and Information from Michigan State University, which inadvertently came in very handy for this paper. What I love most about Disk Detective is that someone like me, with very little professional training in astronomy, can collaborate on incredible scientific research with people from around the world. Though we are all different, we all share on thing in common: our love of discovery and science. For this paper, I used my design software skills to build a precise overlay for the Theissen and West Paper images that we wanted to study. I took 175 Theissen and West images that they had classified as good disk candidates and overlaid the red circle that you’d normally see when classifying on the Disk Detective website. This allowed us to analyze their images just we do our own and by doing this analysis, we found that many of the “good candidate” disks from their paper were contaminated by multiple objects within the red circles.

Hugo – I am from Cordoba, province of Cordoba, Argentina. Computer technician and a few other things. Aside of citizen scientist now I’m part of the GAF (Grupo de Astrometría y Fotometría / Astrometry and Photometry Group) of Cordoba. My years of experience working with computers were always handy to work with Disk Detective and when we started to work in this paper that was not exception. Several of my experiences with Disk Detective are captured in our blog, but it’s fantastic the range of experience what the projects ended making possible for me. If have the answer the questions about what I do for the project, I think what the best answer is “a bit of everything” since I help with things what can range from website classifications, vetting or literature checking to recording and uploading the hangouts videos, managing the Spanish Disk Detective twitter account and side projects.

The image analysis with DS9 was my first time using that software. The learning curve for the analysis was a bit steep but not difficult. I think that the image analysis with DS9 was the first analysis done for paper 3 or at least one of the first biggest part what we as superusers worked on. I remember how we learned to differentiate between real objects and fake signals in the images, fun process what included sometimes using the rainbow color scheme in DS9 that changes black for fluorescent pink, great for contrast, not so great for the eyes.

I also ended in charge of putting together and organizing the spreadsheets where the superuser group was putting their conclusions in the different batch of objects. If some old notes are correct, in some point also helped downloading and uploading again the batch of objects in smaller chunks to help other users with slower internet connections. Making the notes to learn the difference between ghost and real objects was interesting. Some artifacts were easy to tell apart from real objects, but others not so much. Discussing our findings, doubts and ways to work with DS9 was a great experience overall.

Michiharu – I am from Tokyo, only super user from Japan.  I have lived outside my country for more than two decades.  I have completed masters degree in Astronomy 8 years ago while I was in Australia. I also have completed another masters degree in Information Technology.   I am currently looking for a physics lecturer position in one of the universities in Tokyo. Although the Disk Detective project is not quite related to a research topic I studied while completing masters degree, I have basic knowledge regarding astrophysics and therefore I have been able to learn science behind this project and how to contribute very quickly without major problems.  My main tasks for this project are a normal classifications of DSS, 2MASS, and WISE images, and vetting of those objects classified as good objects in the classification stage, which includes literature reviews, to help further select sample targets for the observations. On top of all these tasks, I worked on image analysis on the ROBO-AO images with several other super users using the DS9 imaging software to look for possible contaminants, for this paper.   

Katharina – I am from the greater Munich, Bavaria region in Germany and currently work as a research assistant in legal history at university. I have degrees in law and business studies. Being a member of the advanced user group is therefore a great opportunity for me to contribute to a completely different field of research! For this paper, I worked on vetting objects classified as good objects and on analysing Robo-AO images for background contaminants using DS9.

Johanna – A cognitive neuroscientist by training, my passion for science has always extended beyond my primary research area. I believe that while boundaries that mark off one field of science from another can of course be useful, they remain artificial constructs and can also get in the way of connecting people and ideas. It’s for that reason that I’ve enjoyed becoming a member of the Disk Detective team; it is an extraordinary opportunity to make meaningful contributions to an area of science without the formal training/qualifications that are so often indispensable. I’ve learned a lot and not just about astronomy but also about serious involvement of the public in science (something my field is still struggling with!) and I hope that I can in turn also use my experience in data science and understanding human cognition and perception to advance the project.

My involvement in this paper (the vetting of the Theissen & West images) was one of the first things I did after joining the advanced user team and it was great to feel involved right from the start – even while I was still finding my feet. Deciding on analysis pipelines to improve the false positives/false negatives is once again a much broader scientific issue and so it was interesting to apply it to our specific problem in identifying the pitfalls of certain classification criteria.

Lily – I am from Singapore. I graduated with a bachelor’s degree in Library and Information Studies. Apart from being a citizen scientist, I am also an amateur photographer. My astronomy journey started in 2003, I have enrolled in a couple of online astronomy courses as well as taking part in several online citizen science projects. When Disk Detective launched in 2014, I quickly registered.  Throughout my time with DD, I have participated in several of its projects; ROBO-AO Imaging of Debris Disks was one of them. My task was to identify possible companion objects and artifacts to a nearby debris disk candidate, and record their locations. I am honored to be part of the team. The knowledge that I have gained from the project is invaluable.


Do you want to join us? If you’ve done 300 classifications and you’d like to get more involved in our next paper, drop us a line at diskdetectives@gmail.com and ask to join the advanced user group.

 

Advertisements

Gaia and Virtual Reality

Disk Detectives,

This spring we did a big classification push to prepare for the second data release from the Gaia mission, which arrived on April 25, providing distances to more than a billion stars.   This data instantly converted a substantial fraction of our Disk Detective catalog from mystery objects into stars with known distances and spectral types.  Thank you for all your help getting ready for this event!   We’ve been hard at work since then on (at least) two projects involving Gaia Data Release 2 (DR 2) and Disk Detective data.  And here to tell you about one of them is Susan Higashio, a masters student at International Space University who has been spending her summer as an internal at Goddard Space Flight Center, working on Disk Detective data in Goddard’s new Augmented Reality/Virtual Reality lab.

Best,

Marc

Maker:S,Date:2017-9-25,Ver:6,Lens:Kan03,Act:Lar02,E-Y

Susan Higashio, at Goddard’s AR/VR lab, exploring Disk Detective discoveries using Virtual Reality. Photo credit: Matt Brandt

__________________________________________________________
Greetings, Disk Detectives!

It’s Susan here and I’m thrilled to be a summer intern with Dr. Marc Kuchner on Disk Detective this summer! When I found out that I would be working at NASA Goddard, I was SUPER stoked; not only because it was NASA, but being from the West Coast of Canada, I was really looking forward to visiting the East Coast of America for the first time! Truth be told, I felt a little (A LOT!) intimidated being in the Astrophysics department here at NASA—especially because my background is NOT Astrophysics—but I quickly learned that one of the great things about citizen science is that with a little hard work and dedication, anyone can be a citizen scientist!

screenshot_1_2

Positions of the Stars with Disks You Discovered: A Screen Shot from Goddard’s VR Lab.

Thanks to all you Disk Detectives for classifying all those stars with debris disks and accretion disks! Now, I’m working on a Virtual Reality (VR) project with these Disk Detective objects. They are loaded into VR with the Gaia DR2 Release, and the Disk Detective objects that you’ve classified light up in the VR system.

In addition to being great fun, VR is a really great way to see stars from different perspectives.  When we evolve their positions backwards and forwards in time, the Disk Detective objects help reveal groups of stars that move together, or “young moving groups”! Stars within a moving group formed from the same event so they are about the same age, originate from the same area in space and move in the same direction at about the same speed. Many of the Disk Detective objects I am looking at are young, relatively speaking, (we’re talking tens of millions of years old, compared to our sun, which is about 4.56 billion years old) and so moving groups can be studied to learn about how our solar system may have formed and evolved over time. There are many known moving groups (e.g., a list of young moving groups can be found here) and stars found in Gaia DR2 that we can see in VR might belong to a known group, or maybe even be part of a new one. Wouldn’t it be exciting if some Disk Detective stars made up a new moving group?

 

In the 6 weeks that I have been here, I have learned so many new things. I’ve learned how to make calculations to plot H-R diagrams with stellar isochrones, which are helpful to estimate the approximate age of objects, as well as position/proper motion vector diagrams which illustrate the movement of objects over time. These diagrams can be used to plot any interesting Disk Detective objects to see if they move together over time and possibly see if they might form a moving group. I have also been spending time in the VR lab to search for additional stars that move with together with some interesting Disk Detective objects that I have had my eye on. This is not as easy as it sounds!

It’s not all work here though! I’ve had the pleasure of meeting Disk Detective citizen scientists, Josh Hamilton and his wife, Sarah, when they came to visit NASA Goddard. Marc took us all, including Steven Silverberg and another citizen science intern Michaela Allen, on a tour of the integration and test facility. It was really cool that the James Webb Space Telescope had been in the clean room just months earlier and information about the telescope is still on display.

Josh&Sarah

Disk Detective Citizen Scientists Josh and Sarah Hamilton (left) visiting the highbay at NASA Goddard Space Flight Center with Susan Higashio (middle), Steven Silverberg and Backyard Worlds: Planet 9 intern Michaela Allen (right). Photo credit: Marc Kuchner.

I have long dreamed of working at NASA, and because of Disk Detective and citizen science, this has been an unforgettable experience and a dream come true! Many thanks to Marc, without whose support and guidance I would not be here on this internship; to Professor Hugh Hill at ISU, who was formerly at NASA Goddard and who still has many friends here; as well as many other people who I have learned so much from during my stay here so far: Steven Silverberg and the Disk Detective team, Sarah Logsdon, Michaela Allen, and Peter Pokorny; along with the VR team: Matt Brandt, Tom Grubb, and interns Stewart Slocum, Tyler Cahill, and Hayden Hotham, to name a few. I am really looking forward to spending the rest of the summer here and continuing my work with Disk Detective and all of you citizen scientists. Thank you for your hard work and keep on classifying those objects!

-Sue

My Year In Astronomy, by Citizen Scientist Hugo Durantini Luca

Today we have a guest post from Disk Detective citizen scientist Hugo Durantini Luca., from Cordoba, Argentina, who just returned from another trip to the Complejo Astronómico El Leoncito (CASLEO) observatory to make follow-up observations of our disk candidates.   I think Hugo is going to end up a professional astronomer if he keeps this up!   –Marc 

My Year in Astronomy

First of all, and to avoid repetitions, if you have not read my other post in this blog, you can take a look here:  This post is a continuation of that experience, my love for Astronomy has only get bigger since back them.

2016 and 2017 have been a without a doubt a couple of interesting years for me regarding astronomy, but 2017 takes the prize in my opinion. Even if not in the way that I originally planned or imagined, a lot of the things that I thought back in 2015 started to take form.

While the work in Disk Detective was progressing, 2016 was dedicated to expanding my practical knowledge in Astronomy thanks to the different workshops of the Grupo de Astrometría y Fotometría / Astrometry and Photometry Group (GAF) at the Observatorio Astronómico Córdoba (OAC). I learned some basics about astronomical instruments and more advanced concepts about image processing to be able to make scientifically valuable reports of astrometry and photometry.

Tolar01

Town of Tolar Grande  (Credit: Hugo Durantini Luca)

In 2017 the travel opportunities started to appear again and, of course, I tried to make the most of them, with two travels to CASLEO in the San Juan province for Disk Detective observations, one to the Observatorio Astronómico Tolar (OAT) in the Salta province, and a couple of good experiences in La Estación Astrofísica de Bosque Alegre (EABA) in my own province. Except for CASLEO, the rest were related to my participation in the GAF and IATE.

CASLEO feels after three trips like a very familiar places, so much that even after observing 100 stars this year alone for Disk Detective, I never get tired and always looks forward to return again. Plus, working along Luciano Garcia from the OAC is always a pleasure and a great learning experience. Without a doubt, working with spectrographs never ceases to be interesting.

CASLEOWinter2

CASLEO observatory in winter (credit: Hugo Durantini Luca)

This year I enjoyed the opportunity of exploring the landscapes of CASLEO in two different seasons of the year, and along the trip of 2015, now I have almost a complete picture almost complete of how they change throughout the year. What never changes is the enjoyable environment which welcomes our arrival—another reason to return.

CASLEOSpring2

CASLEO observatory in springtime (credit: Hugo Durantini Luca)

My trip to Salta and the OAT was the longest distance I have traveled and my longest stay away from home in a very long time, but a wonderful experience for multiple reasons. Not only I never visited before the north of my country, with a visit to the National University of Salta included, I was traveling to collaborate in the project of a new astronomical observatory that is starting to work at the same time that I keep my formation as Telescope Operator and advancing in my Astronomy career with help of exceptional people.

The trip to the OAT, located in the small town of Tolar Grande is, let’s say… a bit longer compared with the trip to CASLEO (1200 vs 750 kilometers), but the landscape alone makes the trip worthwhile. Even with the OAT in a stage of construction, we already were able to capture CCD images with enough quality to make a few first contributions: exoplanet transit reports and others events.  The potential of the site is huge.

Tolar02

Macon mountain range outside Tolar Grande (credit: Hugo Durantini Luca)

Tolar Grande is a town with a bit more than 200 inhabitants, but the calm that possesses you along with an incomparable night sky that surpassed the experience of seeing for the first time the Milky Way at CASLEO. 

Bosque Alegre (EABA) in Cordoba was another great experience this year, was able to interact with both telescopes while we were doing observations for the June transit of transneptunian object MU69. The 1.54 meter telescope is the same one that participated of the kilonova discovery that traveled the world with the news of the first gravitational wave event with a confirmed optical counterpart (is worth to mention that the OAT also tried to contributed there), but in this case I worked with the Perrine Telescope (76 cm).

I could keep writing pages upon pages describing in detail all the experiences, but that is not the idea of this post. The idea was to present a small summary of my experiences and current activities, whose initial seeds started in Disk Detective and then started to branch off in ways that I was unable to imagine. Citizen science is without a doubt an invaluable tool for common people to get involved with subjects what they love, maybe at first only like a hobby, maybe later like the start of a career in the scientific world.

Never stop chasing your dreams, and in the case of Astronomy, looking to the skies!

With thanks to Marc Kuchner, Steven Silverberg, Alissa Bans and Milton Bosch from Disk Detective, to the people of the Space Telescope Science Institute–Bernie Shiao, John Debes and Geoff Wallace–and the people of the OAC / GAF / IATE–Diego García Lambas, Carlos Colazo, Matías Schneiter, Cecilia Quiñones, Rodolfo Artola, Carla Girardini, Raul Melia and others. Without them I would not be writing these words, with so many projects in my mind that I hope to get done.

–Hugo

IMG-20171214-WA0000

Dome to be installed in the Astronomical Observatory of Tolar / Observatorio Astrómico Tolar (OAT)  credit: Hugo Durantini Luca

Odds and Ends

Howdy Disk Detectives,

Just thought I’d give you an update on some goings on since our last blog post.

First of all—the project is now 59% complete!  That’s fantastic.  Keep up the good work, everybody!   The James Webb Space Telescope is set to launch next fall, and start taking science data in the spring of 2019.  Let’s try to finish up all the classification work by then!  I bet we can.

IMG_3791

Disk Detective Milton Bosch visits NASA Headquarters.

Second of all, Goddard Space Flight Center held a “Citizen Science/Crowdsourcing Week” this summer, and Disk Detective’s own Dr. Milton Bosch came out to participate.  Milton also spent a day visiting NASA headquarters, talking to scientists and managers about how citizen science can help NASA.  The goal of the week was to encourage more scientists at Goddard and the rest of NASA to launch citizen projects and use crowdsourcing in their research. It was a huge success! There were nine talks on citizen science and crowdsourcing, and Milton met with 16 different scientists from all our scientific divisions at Goddard. We are planning to do it again next year; let us know if you might want to come down to Greenbelt, MD and participate!

Third of all, I can report that our ALMA proposal did not get selected.  But it was a near miss–and we are going to try again!  We submitted a proposal called “Sub-millimeter Observations of Long-lived Accretion Disks'”asking to measure submillimeter radiation from dust around WISE J080822.18-644357.3, the record-breaking disk we discovered plus a few other similar object. The review panel ranked the proposal in the second quartile and gave us a few tips on how to improve it for next round.

In other news, a handy new catalog of disks has appeared online: CircumstellarDisks.org. This catalog shows what we dream of at Disk Detective: disks that have been “resolved” by telescopes.  “Resolved” means that an image of the disk shows more than a dot of light; it actually has the shape of a disk, maybe even a disk with some structure.  Anyway, if you want to see some of the awesome images that keep us disk researchers motivated, take a peek at CircumstellarDisks.org.

Behind the scenes, the science team is busy working on papers about our follow-up observations from the FAST spectrograph, Robo AO, and the duPont telescope.  The advanced users group is vetting objects of interest for future proposals and looking for new moving groups.  And we’re finding lots of interesting disks!

Stay tuned for more news—and keep up the good searching!

Marc Kuchner

 

 

 

 

 

Some Housekeeping, and My Trip on SOFIA

Hi, all. Steven Silverberg from the science team here. Rather than my blog posts appearing under Marc’s name, I’ll be writing on this name from now on. It should make the blog a bit easier and less confusing to read.

Two weeks ago, I was lucky enough to observe on the Stratospheric Observatory For Infrared Astronomy (SOFIA). Here’s a summary of what we did, and what it was like.

SOFIA is a 747 with a custom hatch in the back and a telescope mounted inside, allowing us to observe from 40,000 feet. That altitude is above the primary part of the atmosphere that blocks infrared light, which means the telescope can observe at wavelengths longer than the ones we see in our Disk Detective WISE data, but shorter than the submillimeter wavelengths we’ve observed at with the James Clerk Maxwell Telescope. This neatly fills in a gap in our SEDs, giving us a clearer picture of how dust is distributed in these systems.

Last SOFIA proposal cycle, we submitted two proposals, and one was accepted for “do if time” status. This proposal was to get 53 micron data on a set of our main sequence A stars, as well as those identified by other projects (such as Patel et al. 2014). Our first set of observations was scheduled for May 9-11, so John Debes from the science team (and Space Telescope Science Institute) and I flew to California to ride along.

The plane itself is pretty impressive. 747s are big.

vybjbwa

SOFIA is a working plane, so everyone onboard is piped in to the comms system. Wearing a flight comms headset makes you look important.

hycqzdb

Because they had space, I was given permission to ride along in the cockpit for takeoff. Unfortunately, our first flight had to be scrubbed before takeoff, due to issues with some of the engine gauges.

I did, however, get to ride in the cockpit for takeoff on the second night. Sunset is really pretty when looking through the windshield of a 747.

The main cabin of SOFIA feels a little bit like mission control; lots of people looking at lots of monitors, all in rows. On these flights, we had SOFIA flight safety crew, the mission directors, telescope operators, and the team that built the HAWC+ instrument we were using.

ecq5zyc

We proposed to look at objects with an instrument called HAWC+ (High-resolution Airborne Wideband Camera-plus). This is a far-infrared camera, designed to probe long wavelengths. If the detector is sensitive enough and our target bright enough, we would be able to see light from our star+disk systems to add another point to our SED for that DDOI, but at worst we can get upper limits on what flux there is, letting us at least constrain the system.

HAWC+ has to come into the cabin through the main doors of the airplane. It’s engineered to fit through with 1/8 of an inch of clearance on either side.

9vjp3e2

SOFIA helpfully has lots of posters along the bulkhead about how it works…

…and some of the science it does

94rxekd

It also has one about how NASA came to acquire the plane.

x3u4fnq

Sunsets were impressive through the regular windows, too.

9ck50al

So was the Moon on our second flight.

p6favy9

Our last flight lasted long enough that the Sun was rising as we went into our descent.

z53gas7

The hangar the program is based out of is (unsurprisingly) huge.

7pbgpon

All in all, it was a very educational, very informative, very fun trip on SOFIA. Thanks to you all for contributing to this project to make things like getting data from it feasible.

a6leouq

We won an award!

Good news, everyone: the Disk Detective team won an award from NASA!

Disk Detective received a 2016 Robert H. Goddard Honor Award for Exceptional Achievement in Outreach by a team.

ktblefn

We won this award for “providing an outstanding example of how NASA can serve the public by including them in the process of astronomical discovery.” If that’s not a perfect description of Disk Detective, I don’t know what is.

Marc accepted the award on behalf of the team. However, he wasn’t the only one there; also in attendance were Steven Silverberg (i.e., me, from the science team), and Katie Lowe, a member of the advanced user group who lives in Baltimore and came down to Goddard Space Flight Center for the day.

IMG_3485

It’s thanks to the contributions of everyone–especially our citizen scientists–that we were able to win this award. Thanks to all of you for your contributions to the project, and keep up the good work!  (The project is about 55% complete.)

Steven Silverberg

 

Our Second Paper and a New Kind of M Dwarf Disk

Our second paper just got published! Steven Silverberg, the lead author on the paper, tells up more:

More kudos to us! Our second paper was published by The Astrophysical Journal Letters over the weekend. It will be going up on astro-ph later today. In it, we discuss a potential new kind of disk we’ve found, around an M dwarf.

M dwarfs are really valuable targets to look for. They’re smaller and less massive than the Sun, which makes it easy to find planets around them with the most common detection methods used, radial velocity and transit searches. There are more of these stars in the solar neighborhood than any other kind of star, too. Our nearest neighbor star, Proxima Centauri, is an M dwarf; you may recognize the name from the recent discovery that it has a planet orbiting it <with link to story on it from somewhere>. Since we expect disks to appear about as often as planets appear, we would expect to see lots of M dwarf disks, too, but we haven’t observed that many. The largest survey of M dwarf debris disks to date only found ~175 new disks, and most of those were quite old, over 1 billion years old. Young disks are in some ways more interesting, since any planets around the star would be young enough and therefore warm enough to observe via direct imaging (like the planets around Beta Pictoris).

One method we have of determining the age of a star is seeing if it is a member of a Young Moving Group (YMG). These are groups of stars whose position and motions through the galaxy, along with age indicators in their spectra, suggest that they were born in about the same place at about the same time. Using the online tool BANYAN II by Jonathan Gagne, we can test the likelihood that a star is a member of a moving group, based solely on its observable astrometics (its coordinates, its parallax, its proper motion, and its velocity directly toward or away from us). And you all have found…

4cddfffda83dc323bec969d4e5f122f1

…the oldest M dwarf in a YMG! You first met this object at AWI0005x3s, and flagged it as good. We ran its astrometry data through BANYAN II, and found that it has a 93.9% chance of being a member of the ~45 Myr-old Carina association. Very cool, right?

Well, that’s not all. Because it’s a very unusual disk, too.

As stars form, their circumstellar material is mostly gas and dust that settles into a YSO disk. As time goes on, the gas usually accretes onto the star, forms gas giants, or is blown out of the system, leaving the dust behind as a debris disk. Since there’s more material, the gas disk is usually hotter and more massive than the dusty debris disk. This usually occurs in the first 20 Myr or so of the system’s existence.

This star, however, shows a large infrared excess in both the W3 and W4 bands, which suggests that it’s warm (~263 K) and massive. That implies that there’s still a lot of gas in the system, but there’s not enough data yet to tell us *why* that is. It could be an unusually old YSO disk, or it could be something we’ve never seen before.

awi0005x3s

To help us get a sense of what the system might look like from an artist’s perspective, we enlisted the help of one of our Disk Detectives, Jonathan Holden. Jonathan put together this rather stunning depiction of what this system might look like, that we’ll be using in press releases about this discovery.

You’ll also notice that there are eight citizen scientists listed as co-authors on the paper: Joseph R. Biggs, Milton Bosch, Katharina Doll, Hugo A. Durantini-Luca, Alexandru Enachioaie, Phillip Griffith, Sr., Michiharu Hyogo, and Fernanda Piniero. These fellow Disk Detectives on the Advanced User team helped collect the kinematic data from online astronomical catalogs that we used to test each object with BANYAN II. If you’ve done more than 300 classifications and you would like to join the group, email us at diskdetectives@gmail.com.

Great work, everyone! Two papers accepted in the space of four months is excellent progress for the project, and there’s more on the way. Stay tuned, and keep classifying!

Our First Paper and the First Debris Disk with a White Dwarf Companion!

Congratulations, us!  Our first paper was accepted for publication in the Astrophysical Journal. The journal will copy-edit it and typeset it nicely.  But in the meantime, you can read a draft online here at the astro-ph archive. If you spot any errors, please let us know. The paper describes how the project works (you’re probably familiar with that) and announces 37 new disk candidates, including what looks like…

HD74389.diagram the first debris disk around a star with a companion white dwarf!  You met this star, HD 74389,  as subject AWI00000wz and several of you (including Artman40 and  Dolorous_Edd) immediately recognized it as a good candidate, roughly two years ago.  Well, amazingly, this critter is the first of its kind.  Stars with white dwarf companions are common; some of the brightest stars in the sky have white dwarf companions, like Sirius and Procyon.  And this star is an “early A” type star, meaning its about twice as hot as the Sun. Debris disks around “A” stars are fairly common; maybe 15-20% of A stars host debris disks.  But for some reason, nobody had ever found a star with BOTH a debris disk and a white dwarf companion.

One possible reason for why these objects are rare is that the birth of a white dwarf is somewhat violent.  In astronomy, we generally assume that the all the stars in a binary or triple system formed at the same time. More massive stars live shorter lives; they turn into white dwarfs (or neutron stars or black holes) sooner.  So that means the white dwarf in this system probably came from a star slightly more massive than the A star that has the debris disk, maybe a B type star.  This B star lost most of its mass–more than the mass of the sun–into a wind that shines for a while as a planetary nebula. This wind can blow away the small dust grains that are the part of debris disks that we actually see with our telescopes.

siriusbfig.cropped

Sirius, the brightest star in the sky, is an A star with a white dwarf companion.  Add to this picture another companion star AND a debris disk and you’ve got HD 74389. (HST/Kuchner & Brown 1999)

However, there are three stars known that have extrasolar planets orbiting them that have white dwarf companions.  So maybe this wind isn’t all that harsh on planetary systems.   Alternatively, some theorists have suggested that the wind from an evolved star can form a new disk around the star’s companion. So maybe this disk we saw is a kind of second-generation debris disk.

To make things even weirder, HD 74389 also has an M dwarf companion; it’s what’s sometimes called a hierarchical triple, meaning that the M dwarf and the A dwarf look like a somewhat close binary, and the white dwarf orbits much farther out.  The distance to this triple system is about 111 parsecs (360 light years), based on observations from the Hipparcos telescope.  Based on that distance and the separation between the images of the A star, the M dwarf and the white dwarf, we can estimate that the white dwarf orbits roughly 2200 astronomical units (AU) away from the A star with the disk.  The M star orbits much closer in, at about 400 AU.   For comparison, Pluto’s orbit around the Sun is about 39 AU.

Besides this exotic object HD 74389, our paper reports thirty two other new debris disk candidates that we found and it describes a new detection of 22 micron excess from a previously known debris disk host: the star HD 22128. About half of the new debris disks are close enough to the Sun that they are potential targets for imaging with coronagraphs to search for extrasolar planets that could be lurking within them.

The paper reports four more interesting objects that we discovered, classical Be stars HD 6612, HD 7406, HD 164137, and HD 218546.  A classical Be star is a funny kind of beast: a rapidly rotating star surrounded by a disk made of gas. Nobody knows quite how these objects form, but it seems most likely that the gas disks are ejected from the stars themselves.  These objects are not the kind of disks that are thought to host planetary systems, but they are fun to think about nonetheless. Here’s a handy review paper about Be stars you might like.

The paper lists the user names of everyone who helped classify one of the new disks–and you may have noticed the eight of the authors of this paper are citizen scientists: Joseph Biggs, Milton Bosch, Tadeas Cernohous, Hugo A. Durantini Luca, Michiharu Hyogo, Lily Lau Wan Wah, Art Piipuu, Fernanda Pineiro.  They are members of the Disk Detective Advanced Users Group who helped do some of the more in depth background research on the stars discussed in the paper. If you’ve done more than 300 classifications and you’d like to join this group, just send an email to diskdetectives@gmail.com.

Nice work, everybody!  And we’re just getting started.  Stay tuned for more papers later this year.

My Day at NASA Goddard Space Flight Center

Disk Detective Milton Bosch stopped by NASA Goddard Space Flight Center this month to meet with some of the science team and see the James Webb Space Telescope being built.   What ended up happening that day we never could have guessed!  Here’s the story, in his words.

My Day at NASA Goddard Space Flight Center

by Milton Bosch    Nov.20, 2015

Greenbelt, Maryland has always held a special place in my heart and mind. I met and courted my wife there and lived three wonderful years in a unique New Deal era city in suburban Maryland outside Washington, DC. It has a lake and even camping at Greenbelt Park, part of the National Park system.  Best of all, NASA in its wisdom had chosen Greenbelt as the site
for its first Space Flight Center. NASA Goddard opened on May 01, 1959. We had it all.

IMG_1402

Shambo Bhattacharjee (left), Milton Bosch (center) and Steven Silverberg (right) at Goddard Space Flight Center, with the James Webb Space Telescope, under construction.

I’d always look at the guarded entrance across from our shopping center, and wonder, What is going on inside those gates? Really cool stuff, no doubt. That was in 1981; I was in medical school and there was almost zero chance I’d ever be invited there. Even after moving to California for residency training and  my career in internal medicine, my NASA Goddard
memories were kept alive whenever I had a faint recollection. When a good friend named Willy got a job at Goddard as a machinist in 2010, the connection deepened a wee bit. I could picture myself inside if Willy could get permission to bring a visitor. That snippet of hope left when Willy left NASA Goddard after a couple years.

Fast forward: It’s now November 04, 2015 and I’m on a Google hangout call with the science team of Disk Detective, a citizen science project run by NASA. Months earlier, a NASA email arrived announcing a new citizen science project on January 30, 2014 , with a grant from The Zooniverse. Disk  Detective’s goal was to locate protoplanetary disks – very early solar
systems – around young stars, and debris disks around more mature ones. I thought, “Discover new solar systems and planets and help learn how they form? I’m in!” I thought “in” was just doing classifications of objects, using the Disk Detective flip-book to triage them into two basic categories: a good candidate, or flawed (and reasons why). After doing many classifications came the invitation to become a superuser from principal investigator Marc Kuchner. As such, I learned how to navigate the astronomy catalogs, and choose promising objects for the main spreadsheet and hone my classifying skills.  Step by step, with lots of mentoring and greater responsibilities, I was eventually asked to join the science team and here I was, sitting at my computer on November 5th for our weekly Google hangout with the science team.

I mentioned to Marc that I had won two free concert tickets to Madison Square Gardens for Nov. 7th, and would be staying near Greenbelt in Crofton, MD. Then Marc asked if I’d like to drop by on Nov. 6th for a tour of NASA Goddard Space Flight Center. Two days later I fulfilled my dream. What came later was a big surprise for everyone.

DSCN2566

Milton Bosch and Shambo Bhattacharjee in Marc Kuchner’s office at Goddard Space Flight Center.

We started out with meeting everyone on the Disk Detective team at NASA Goddard. It was  great finally meeting Marc Kuchner, PI, and graduate students Steven Silverberg and Shambo Bhattacharjee.  We did a quick tour of the ground level, and then visited the offices of each. Then, upstairs to see the world’s largest clean room, where the James Webb Space Telescope (JWST) is under construction. We exited the elevator to discover a VIP tour in progress, and it slowly dawned on me that I was looking at North Dakota senator Heidi Heitkamp. She was not just any US Senator; she was a senator I liked and had supported her campaign. I whispered to Marc that I knew a bit about Senator Heitkamp, so he asked me to ask her a question about citizen science. I said, OK, and waited for my opportunity.

Just when it seemed like the right moment would never appear, I saw a raised hand asking if we could talk about citizen science.  Senator Heitkamp walked over and introduced herself to each one of us, asking our names, where we lived, what our jobs were, and what we did before coming to NASA Goddard. She was pleased to meet a supporter from Napa, California. She wanted to know my journey from organic chemist, to medical doctor, to having to go on full disability, to finding and joining Disk Detective. So I told her my story of today being the fulfillment of a 34 year-old dream, all made possible by joining Disk Detective almost two years earlier, and a 1:20,000 chance of winning 2 free concert tickets to Madison Square Gardens.

IMG_1387

Milton meets Center Director Chris Scolese. Senator Heitkamp and Shambo Bhattacharjee are in the background.

While we talked, the cameras were snapping away and all-in-all, I think we got to spend 15 minutes on Disk Detective and citizen science. It was an unlooked-for opportunity to get the word out about Disk Detective and citizen science with one of our U.S. Senators and it could not have gone better. We were glowing for the rest of the day from the encounter.

Then the room cleared, and we got to see what we had come upstairs for: the James Webb Space Telescope under construction. (One of the goals of Disk Detective is to find targets to propose to observe with this telescope.) We could see the frame, the folded wings, and folded arm for the secondary mirror. On catwalks 80 feet above the crew sat a row of flat dewar flasks, each containing one hexagonal mirror. Launch date is less than 3 years away –  October, 2018. Giant rolls of shrink wrap were placed all about for final sealing before JWST’s journey to the launch vehicle. I looked at everything in the room visible from our vantage point and then went downstairs and peeked through an entrance door window. No photos are allowed through that window, nor inside either.

Next stop was one of the “testing rooms”; though I’m sure it has a formal name. It had an 8 story high egg-shaped metal container, filled with liquid nitrogen for starters. Inside that was another cryogenic container filled with liquid helium. Every single piece, every instrument, every device must survive that environment before it can be trusted for launch. After all, they must function at extremely low temperatures. But more terrors awaited the equipment and instruments that go into space.

Nearby was a huge room with a centrifuge that dwarfed a blue whale. It was like the room where the centrifuge scene from The Right Stuff movie was filmed, but this centrifuge has a different purpose. In order to test equipment properly (not people), the centrifuge reaches up to 15 G’s of acceleration, helping insure against failure in the most stressful environments imaginable. Steven said it would tear a human to pieces.

Next door to that was a huge acoustic testing room with a 7 or 8 foot “tweeter” and a 12 foot “woofer” with a maximum combined sound intensity of 150 decibels. No humans are allowed inside that lethal chamber. An adjacent room held the machinery that powered the 150 decibel monster. A six inch hose for pressurized nitrogen powered the tweeter, and emitted so much of the simple asphyxiant that there is no admittance during testing. We paused our tour for a relaxing lunch in the cafeteria, and then filled time while Marc had teaching duties. Those duties now completed, we all met in Marc’s office, where all the Google hangouts take place (with other scientists joining from Adler Planetarium, The Space Telescope Science Institute, University of Oklahoma, and more).

IMG_1394

Milton and Senator Heitkamp study a poster about the James Webb Space Telescope, while the cameras click.

We spent an hour discussing ways to improve our sound recordings and other technical issues, as well as more important problems, like finding a replacement llama doll for Marc’s very young son, should he lose his beloved cozy-coze. Then I was presented with a highly coveted Disk Detective coffee mug, and we took photos of a poster where my name appeared as co-author, alongside the names of five other citizen volunteers like myself. Then it was time to go.

It was a truly great day, full of the unexpected, and a real pleasure meeting some of the science team in person. Never give up on your dreams! Disk Detective will take you as far as you want go and has all types of support while you navigate the learning curve…all the way up to co-authorship of scientific papers.

Disks at the “Spirit of Lyot 2015” Conference!

Detectives,

Manon Gingras and me by the Disk Detective poster at the “In the Spirit of Lyot 2015” conference.

Bernard Lyot was a French astronomer who invented a tool called a “coronagraph” that’s useful for making images of disks and exoplanets.  A few weeks ago, I went to a conference in Montreal, called “In the Spirit of Lyot 2015” named in his honor, and I learned lots of cool new stuff about images of disks and planetary systems.  Here are some of the highlights.

First of all, Disk Detective superuser Manon Gingras came to the conference and I got to meet her!  Manon was spending her last few days in Montreal before she moved to Australia, and she drove downtown to the conference hotel to spend the afternoon with us.  While she was at the conference, she did an interview with a reporter from the French language magazine Le Devoir about Disk Detective.  Manon described her experience at the conference in this blog post.  (Don’t worry, when Manon says “gunning down” she is not talking about anything violent–it’s just an expression.)

New image of the debris disk around HD 115600 by Thayne Currie.

Disk Detective science team member Dr. Thayne Currie described a debris disk around the star HD 115600 that he imaged for the first time. It’s a beauty, an eccentric ring of debris about 15 million years old around a star just about 50% more massive than the sun, essentially a younger version of the Kuiper Belt in our solar system. And–arrgh!–this star is in the Disk Detective catalog, just nobody had gotten around to looking at it yet.  So we might have been able to claim this as one of our Disk Detective discoveries too. Oh well.  Next time.

Dr. Erika Nesvold gave a talk about her new dynamical models of the Beta Pictoris debris disk. They show what happens when a planet, embedded in a debris disk, orbits very slightly out of the plane of the disk. Here’s the press release about her results and the YouTube video.  You might remember Erika if you were around during the first week after Disk Detective’s launch; she pitched in to help answer questions on Talk.

New model of the Beta Pictoris debris disk by Erika Nesvold showing how a planet sculpts it into complex spiral patterns.

And last but not least, the Gemini Planet Imager (GPI) team announced a new directly-imaged extrasolar planet, 51 Eridani b, located inside a debris disk. You have probably heard of the many hundreds of planets discovered by NASA’s Kepler space telescope; those planets have been inferred from the way they sometimes block part of the light from the stars they orbit.  Directly imaged planets–planets whose light we can collect like 51 Eridani b–are much rarer.   And most of these directly-imaged planets orbit within debris disks, one kind of disk that we’re searching for at Disk Detective.  So when we search for disks, in a way, we’re searching for planets too!

Everyone I spoke to at the meeting was interested in learning about Disk Detective, and eager to hear what we have found. I showed off some of the work we did following up our Disk Detective Objects of Interest (DDOIs) with RoboAO, and several colleagues asked to collaborate with us as a result. Hugo, Michi, Ted, Joe, Lily, Katharina, and Milton hustled to get this data analysis work done in time for me to show off.  So the science of disks and exoplanets marches on…and we’re right in the thick of it.  Keep up the good work, everybody!

Best,

Marc